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Bifurcation diagram of a complex delay-differential equation with cubic nonlinearity

D. Pieroux and Paul Mandel
Optique Nonline´aire Théorique, Universite´ Libre de Bruxelles, Campus Plaine, Code Postale 231, 1050 Bruxelles, Belgium

~Received 13 August 2002; published 21 May 2003!

We reduce the Lang-Kobayashi equations for a semiconductor laser with external optical feedback to a
single complex delay-differential equation in the long delay-time limit. The reduced equation has a time-
delayed linear term and a cubic instantaneous nonlinearity. There are only two parameters, the real linewidth
enhancement factor and the complex feedback strength. The equation displays a very rich dynamics and can
sustain steady, periodic, quasiperiodic, and chaotic regimes. We study the steady solutions analytically and
analyze the periodic solutions by using a numerical continuation method. This leads to a bifurcation diagram
of the steady and periodic solutions, stable and unstable. We illustrate the chaotic regimes by a direct numerical
integration and show that low frequency fluctuations still occur.
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I. INTRODUCTION

Since the work of Verhulst~1804–1849! in population
dynamics, delay-differential equations~DDEs! are used to
model dynamical systems in many scientific and enginee
domains, e.g., optics@1,2#, chemistry @3,4#, climatology
@5,6#, biology @7,8#, car traffic@9,10#, economy@11,12#, and
cryptosystems based on synchronized hyperchaos@13–16#.
Their widespread use stems from the fact that delayed te
handle two common situations. First, they mimic in a si
plistic way the time required for a component of the mode
switch between two states. Second, a time lag results n
rally from the finite propagation velocity of substances@17#
and energy fields@1,2,18#, as well as from the latency o
feedback loops@19#.

In this paper, we focus our attention on the dynam
generated by the simple DDE

dE

dt
52~11 ia!uEu2E1xE~ t21!. ~1!

All variables and parameters in Eq.~1! are dimensionless
E(t) is a complex variable,t is the time, anda andx are real
parameters. This equation has an instantaneous cubic no
earity uEu2E and a linear delayed termE(t21). These two
terms are necessary for the system to display an interes
dynamics: if x50, E(t) vanishes in the long time limit
while removing the nonlinearity leads to a linear equat
whose long term solution either vanishes or diverges. T
coefficienta couples the phase and amplitude ofE. Most of
the results will be derived for realx. However, some bifur-
cation mechanisms are easier to understand, and some p
are made simpler ifx is complex. This is achieved by writ
ing x5he2 iV with h andV real:

dE

dt
52~11 ia!uEu2E1he2 iVE~ t21!. ~2!

As shown in Sec. II, Eq.~2! models the problem of a
semiconductor laser pumped at threshold and subject t
optical feedback with a large delay. However, the interes
1063-651X/2003/67~5!/056213~7!/$20.00 67 0562
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Eq. ~2! extends well beyond that particular model. For i
stance, the complex equation describing the small amplit
oscillations of a system subject to a delayed effect share
common structure with Eq.~2!, as discussed in Refs.@20,21#
for the case of real-valued models of class-B lasers subject to
incoherent optical or optoelectronic feedbacks. Equation~2!
has also been investigated in connection with the analysi
experiments conducted on a single-mode CO2 laser with de-
layed feedback of the losses@22,23# where a two-
dimensional~2D! representation of the time series was pr
posed. Its justification was given in Ref.@24# where it was
proved that close to a Hopf bifurcation of Eq.~2!, the solv-
ability condition ~i.e., the slowly varying amplitude equa
tion! is a complex Ginzburg-Landau equation with real d
fusion. The same result was also obtained for a 2D r
equation model of a laser with external delayed feedb
@25#. Similar experiments conducted on a class-A He-Ne la-
ser have also relied on an equation similar to Eq.~2! for
interpretation@26,27#.

In this paper, we focus on the bifurcation diagram for t
steady and periodic solutions of Eq.~1!. There are two sur-
prising features with this bifurcation diagram:~i! its unex-
pected complexity and~ii ! its similarity with the bifurcation
diagram derived for the full Lang-Kobayashi equatio
@20,28#. The complexity of the bifurcation diagram stem
from the bridges that connect the infinite set of periodic
lutions. This infinity is a simple and direct consequence
the delay. The bridges appear via the mechanism alre
described in Ref.@28#. In addition, we describe a new
mechanism that generates the bridge destruction. Finally
follow numerically two branches of chaotic solutions a
show that low frequency fluctuations are still supported
Eq. ~1!. This paper is organized as follows. In Sec. II, w
show how to derive Eq.~1! from the Lang-Kobayashi rate
equations. In Sec. III, we study analytically the steady so
tions and their stability. Section IV is devoted to the period
solutions whose bifurcation diagram is obtained numerica
by using a continuation method. In Sec. V, we report on
occurrence of low frequency fluctuations in the simplifi
model~1! and, for completeness, on the existence of cha
attractors.
©2003 The American Physical Society13-1
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II. LONG DELAY LIMIT

Lang and Kobayashi@2# proposed a simple rate equatio
model to describe a semiconductor laser subject to op
feedback~Fig. 1!. This model consists of two coupled diffe
ential equations for the laser intracavity complex fieldE and
the real excess carrier densityD:

dE
dt

5~11 ia!DE1ke2 intE~ t2t!, ~3!

T
dD
dt

5P2D2~112D!uEu2. ~4!

In these dimensionless equations,a is the linewidth enhance
ment factor,P the excess pump rate above the solitary la
threshold (P50 at threshold ifk50), T the ratio of the
electronic carrier lifetime over the photon lifetime inside t
cavity, t the round-trip time outside the laser cavity,k>0
the feedback strength, andn the free-running laser optica
frequency. The dimensionless timet and the delayt are mea-
sured in units of the photon lifetime.

Given the complexity of the Lang-Kobayashi equations
is useful to consider limits in which simplifications may b
expected. The obvious parameter on which a limit can
based is the distance between the laser and the externa
ror, which controls the delay-time. The short delay time lim
has been investigated experimentally and numeric
@29–31#. In this paper, we consider the opposite limit of
long delay time. Many experiments on semiconductor las
focus on pump values close to the solitary laser thresh
(uPu!1), weak feedback (k!1), and large delay (t@1).
To study that range of parameters, we introduce the sca

E5AtE, D5tD, p5tP, h5tk, V5tn, s5t/t.
~5!

In terms of the scaled variables and parameters, Eqs.~3! and
~4! become

dE

ds
5~11 ia!DE1he2 iVE~s21!, ~6!

T

t

dD

ds
5p2D2S 11

2

t
D D uEu2. ~7!

FIG. 1. Schematic setup of a semiconductor laser diode sub
to delayed optical feedback. The output beam is reinjected in
the laser cavity after reflection on a mirror. An attenuator is use
reduce the feedback beam intensity. The delayt corresponds to the
round-trip time in the external cavity; i.e.,t52L/c, with c being
the light velocity.
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In the large delay limitt→`, (T/t)dD/ds and 2D/t vanish
in Eq. ~7!. The carrier density can then be adiabatica
eliminated because Eq.~7! reduces toD(t)5p2uE(t)u2. In-
serting that result into Eq.~6! and renamings by t leads to a
single cubic complex equation for the electric field@32#:

dE

dt
5~11 ia!~p2uEu2!E1he2 iVE~ t21!. ~8!

At the solitary laser threshold, i.e., forp50, Eq. ~2! is re-
covered.

Before studying the dynamics of Eq.~2!, it should be
stressed that Eq.~8! is the regular limit of Eqs.~3! and~4! for
t@T and P5O(t21). That is, no dynamical phenomeno
existing in this parameter domain is lost by simplifying Eq
~3! and~4! into Eq. ~8! and, conversely, every feature of E
~8! is also a feature of Eqs.~3! and ~4!. This may seem
contradictory with the fact that Eqs.~3! and ~4! can display
relaxation oscillations while Eq.~8! cannot. Indeed, in the
absence of feedback, the long time solution of Eqs.~3! and
~4! is given by

E5APeif, D50, ~9!

wheref is a constant phase depending on the initial con
tion. If this stable state is perturbed, the system relaxes w
damped relaxation oscillations only if 8PT.1. Otherwise,
the perturbation decays exponentially without oscillatio
Because we consider the limitt@T and P5O(t21), 8PT
!1 and Eqs.~3! and ~4! do not display relaxation oscilla
tions. Thus, the absence of relaxation oscillations in Eq.~8!
results from the scaling~5! and the limitt@1; the full model
@Eqs. ~6! and ~7!# and the reduced model@Eqs. ~8! or ~2!#
share this property.

III. STEADY SOLUTIONS

In this section, we study analytically the properties of t
trivial solution E50 and of the solutions of Eq.~2! with
constant modulusuEu. Whatever the parameter values,E
50 is always a solution of Eq.~2!. A linear stability analysis
shows that Hopf bifurcations exist for

V05~ 1
2 1k!p1~21!kh0 , ~10!

with k50 or 1. We call these bifurcations primary Hop
bifurcations. As seen in Fig. 2, these Hopf bifurcations fo
lines dividing the polar plane of the complex parame
he2 iV into an infinite number of regions. Each time a Ho
line is crossed, the trivial solution displays a new bifurcatio
Together with an analysis of the stability of the trivial sol
tion for h!1, this implies that the trivial solution is stabl
only inside the innermost region, the black-filled doma
close to the origin in Fig. 2.

Using a two–time scale approach, the branch emerg
from a primary Hopf bifurcation can be analyzed in the us
way. For that purpose, we define the vicinity of the bifurc
tion: h5h0(V0 ,k)1e2h2 with e!1 andh2561. We also
introduce a slow time variables5e2t and use the derivative

ct
e
o

3-2



s
m

ow

-

is

-

at
ial
ns

n-

a-

b-
olu-

hat
e.

o

are

lex
bil-
the
n.

f

nch
er

is
ots

a
ary
c

ts

in.

s

BIFURCATION DIAGRAM OF A COMPLEX DELAY- . . . PHYSICAL REVIEW E 67, 056213 ~2003!
chain rule d/dt5] t1e2]s . Introducing these expression
into Eq. ~2! and looking for a perturbed solution of the for

E~ t !5eE1~ t,s!1e2E2~ t,s!1•••, ~11!

we obtain a cascade of nested problems, one for each p
of e. Solving the first-order problem gives

E1~ t,s!5r1~s!ei [f1(s)1v1t] , ~12!

with v15(21)k11h0. The slowly varying variablesr1(s)
and f1(s) are determined by a solvability condition ob
tained at ordere3:

dr1

ds
5r1

h2h02r1
2@12~21!kah0#

11h0
2

, ~13!

df1

ds
5~21!k11

h21r1
2@h01~21!ka#

11h0
2

. ~14!

The steady solution is given by

r1,st
2 5

h2h0

12~21!kah0

, ~15!

f1,st5
h2s

ah02~21!k
. ~16!

For k50 and ah0.1, r1,st
2 >0 implies h2521, and the

branch of solutions emerging from the Hopf bifurcation
subcritical. Fork51 or ah0,1, h251, and the branch is
supercritical. By linearizing Eq.~13! around the steady solu
tion ~15!, it is straightforward to show that solutions~15! and

FIG. 2. Location of the primary Hopf bifurcations, Eq.~10!. The
null solution is stable only in the black-filled innermost doma
Note that forV5np with n integer, everyk50 bifurcation collides
with a k51 bifurcation, leading to degenerate Hopf bifurcation
The value ofa is irrelevant here.
05621
er

~16! are stable only for supercritical branches emerging
the border of the innermost region of Fig. 2 where the triv
solution is stable. Note that the primary Hopf bifurcatio
are not degenerated unlessV is a multiple ofp. In that case,
a k50 and ak51 bifurcation coalesce to produce a dege
erate bifurcation of the trivial solution.

The solutions emerging from the primary Hopf bifurc
tions are of the formE5rsexp(ivst). These solutions are
called external cavity modes in the Lang-Kobayashi pro
lem. They are also often referred to as the steady state s
tions of Eq.~2! because the corresponding intensityuEu2 is
constant in time. Nevertheless, it should be kept in mind t
the complex variableE still has a harmonic time dependenc
InsertingE5rsexp(ivst) into Eq. ~2! leads to

rs
25h cos~vs1V!, ~17!

vs52hA11a2sin~vs1V1arctana!. ~18!

Without further approximation, Eq.~18! cannot be solved
analytically @33#. Each value ofvs verifying Eq. ~18!, such
that cos(vs1V).0, defines a distinct steady solution. T
study its stability, we seek solutions of the formE5(rs

1er̃)exp@ivst1ief(t)#, with e small and real. After lineariz-
ing Eq.~2! around the steady state solution, the solutions
of the form r̃(t) andf(t)}exp(lt). This gives a solvability
~or characteristic! equation forl,

05rs
4~11a2!~3el1e2l24!12rs

2avs~2el1e2l23!

1vs
2~el1e2l22!12rs

2l~2el21!1l2el. ~19!

This transcendental equation admits an infinity of comp
roots. Roots with a zero real part indicate a change of sta
ity, except for one root that always vanishes. It reflects
invariance of the solution with respect to a time translatio
For another zero root to exist, the derivative of Eq.~19! with
respect tol must also admitl50 as a root. This occurs i
either rs50 or 11h cos(vs1V)5ah sin(vs1V). The first
possibility corresponds to the emergence of a steady bra
from the trivial solution. The second possibility, togeth
with Eq. ~18!, corresponds to a turning point. Besidesl
50, the only other possibility to have a change of stability
a pair of imaginary conjugated roots. Such a pair of ro
indicates the existence of a Hopf bifurcation leading to
periodic regime. We call these bifurcations as second
Hopf bifurcations. LetvH be the frequency of the periodi
oscillation at the secondary Hopf bifurcations. We insertl
5 ivH into Eq. ~19!. Separating real and imaginary par
leads to

vH
2 cosvH14rs

2vHsinvH52@2rs
4~11a2!13rs

2avs1vs
2#

3~cosvH21!, ~20!

vH
2 sinvH52rs

2$vH~2 cosvH21!

1@rs
2~11a2!1avs#sinvH%. ~21!

.
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These two equations, coupled to Eqs.~17! and ~18!, form a
system of four equations for the three variablesrs , vs, and
vH . Since the system is overdetermined, it is solvable o
for particular values ofh5hH(a,V) which locate the sec
ondary Hopf bifurcations. Further insight in the existen
condition for a secondary Hopf bifurcation is obtained
follows. Let vH be the oscillation frequency andrH the am-
plitude of the steady solution at the secondary Hopf bifur
t

i-

b
e

t
t
a
-
ti
al
m

th

a
ed

f
se

e
e
in

i

05621
y

s

-

tion. It is then straightforward to expressa, vs , h, andV in
terms ofvH , andrH as

a25

2
@2rH

4 sinvH12vHrH
2 ~2 cosvH21!2vH

2 sinvH#2

2rH
4 @2rH

4 sin2vH16vHrH
2 sinvH1vH

2 ~11cosvH!#
,

~22!
vs52
2rH

4 ~11a2!sinvH12vHrH
2 ~2 cosvH21!2vH

2 sinvH

2arH
2 sinvH

, ~23!
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h25rH
4 ~11a2!12avsrH

2 1vs
2 , ~24!

cos2~V1vs!5
rH

4

rH
4 ~11a2!12avsrH

2 1vs
2

. ~25!

Becausea2>0, Eq.~22! provides an implicit condition tha
vH andrH must also verify

2rH
4 sin2vH16vHrH

2 sinvH1vH
2 ~11cosvH!,0. ~26!

That implies, in particular, the requirementvHsinvH,0. The
solutionE5r exp(ivt) emerging from a secondary Hopf b
furcations is periodic, i.e.,r and v are periodic in time. In
the following section we study these periodic solutions
means of a numerical continuation method because the
pressions obtained analytically forr andv are too compli-
cated to be useful.

In this paper, we are following the standard approach
study the secondary Hopf bifurcations. An alternative way
analyze the vicinity of the secondary Hopf bifurcations h
been proposed in Ref.@24# where it is shown that a multiple
scale analysis leads to a complex Ginzburg-Landau equa
with real diffusion. The occurrence of a partial differenti
equation in the local analysis of the DDE underpins the co
plexity of its solutions.

We illustrate the analytical results obtained so far with
bifurcation diagram displayed in Fig. 3~a!, shown fora53
andV50. The steady branches of constantrs5uEu are seen
to emerge from the trivial solution. Only the supercritic
branch emerging from the primary Hopf bifurcation locat
at the origin h50 emerges as a stable solution. ForV
P]p/2,3p/2@ mod(2p), that solution is shifted from the
origin. At all other primary Hopf bifurcations, a pair o
subcritical-supercritical branches emerge. This is becau
k50 primary Hopf bifurcation collides ak51 primary Hopf
bifurcation forV5np, n being a non-negative integer. Th
subcritical branches display a turning point after which th
become stable. Because all steady branches display an
nite number of secondary Hopf bifurcations, increasingh
makes the destabilization of the stable steady solutions
eluctable.
y
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IV. PERIODIC SOLUTIONS

Using the numerical continuation packageDDEBIFTOOL

@34,35# for delay differential dynamical systems, the locatio
and stability of the branches of periodic solutions can
determined. Our results, reported in Fig. 3~a!, indicate that
the periodic solutions form bridges, at least for moder
values ofr. The bridges emerge from the secondary Ho
bifurcations discussed in the preceding section. They alw
connect a supercritical branch to a subcritical branch. T
bridge structure has been recently studied for the La
Kobayashi equations~3! and ~4! in Refs. @20,28#. In Ref.
@20#, it was shown that asV approachesnp from below,
every k50 primary Hopf bifurcation moves towards ak
51 primary Hopf bifurcation. AtV5np, they collide and
two new secondary bifurcations appear. IncreasingV further,
the two primary bifurcations move away from each oth
while the secondary Hopf bifurcations move up along th
steady branches but remain connected by a bridge of peri
solutions~see Fig. 5 in Ref.@20#!. As a consequence, secon
ary bifurcations linked together by a periodic bridge res
from the same collision.

From Fig. 3~a! two properties of bridges emerging from
stable steady branch can be found:~i! the periodic branch
emerges stably if it is supercritical, and~ii ! in the subcritical
case, it emerges unstably but becomes stable after a tur
point. The other side of the bridge always ends on an
stable steady branch and is unstable. Therefore, there
be a bifurcation on the bridge. It is a tertiary Hopf bifurc
tion leading to a quasiperiodic regime. This tertiary bifurc
tion is found on every bridge of periodic solutions, ev
those who are completely unstable, connecting a superc
cal solution and a subcritical solution emerging from t
same primary bifurcation. Because the continuation pack
we use cannot follow quasiperiodic solutions, we integra
Eq. ~2! by using a variable step size Runge-Kutta 4~3!
method with Hermite interpolation to cope with the delay
term @36#. In this way, we were able to follow the quasiper
odic solutions until they become unstable and lead to a c
otic regime, as shown in Fig. 3~b!. Finally, period-doubling
bifurcations involving only unstable periodic regimes ha
been found with the numerical continuation package.
3-4
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Up to now, we have focused on supercritical-subcriti
~sup-sub! collisions, that is, collisions implying a supercrit
cal and a subcritical branch. However, it follows from Eq
~10! and ~15! that if eithera<2/(3p).0.21 andV52np,
or a<2/p.0.64 andV5(2n11)p, collisions involving
two supercritical branches are possible. In Figs. 4~a,b!, we
show that fora50.5 andV5p the mechanism leading t
the bridge formation is also applicable to the collision of tw
supercritical branches.

A bridge destruction mechanism has also been identifi
Comparing Fig. 4~a! ~right before the collision! with Figs.
4~b,c! ~right after the collision!, it is seen that two secondar
Hopf bifurcationsB2 andB3 have been created on the stea
branches, and that they are connected by a bridge of peri
solutions. IncreasingV, the primary bifurcations move apa
and the secondary bifurcations move up along the ste

FIG. 3. Bifurcation diagram of Eq.~2! for a53 andV50. The
maximum temporal amplitude ofuEu is shown versus the feedbac
strengthh. ~a! Diagram obtained via numerical continuation. Thic
~thin! lines indicate stable~unstable! solutions. Steady branches a
labeled ‘‘St,’’ branches without label are periodic. Ath53p/2,
there is a collision between a supercritical primary bifurcation an
subcritical primary bifurcation. Circles locate both secondary a
tertiary Hopf bifurcations, triangles locate period-doubling bifurc
tions. DecreasingV by 2p maps the bifurcation pointsB3 , B38 ,
B2, andB28 onto B2 , B28 , B1, andB18 , respectively.~b! Diagram
obtained by direct numerical integration of Eq.~2!. Steady, peri-
odic, quasiperiodic, and chaotic~including LFF! regimes are drawn
with plain lines, dashed lines, dotted lines, and stars, respecti
Unstable solutions are not displayed.
05621
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branches. This is precisely the scenario for sup-sub collis
@20#. However, the bifurcationB2 collides eventually with a
third bifurcationB1 moving downward on the same stead
branch. This collision leads to the disappearance of bothB1
and B2 bifurcations. At the point of collision, the periodi
bridge merges with the branch of periodic solutions asso
ated previously withB1 @Fig. 4~d!#.

Coming back to the question of degeneracy, this analy
shows that forV5np1« and«→0, two Hopf bifurcations
collide if «,0, but four Hopf bifurcations collide if«.0.
Thus V5np is a point of bifurcation collision and discon
tinuity.

Obvious differences between the sup-sub and sup-sup
lisions appear also in the stability of the steady and perio
branches. In the sup-sup case, both ends of the bridges
subcritical, the whole bridge is unstable, and there is no
tiary Hopf bifurcation. Before the primary Hopf bifurcation
collide, one steady branch is stable and the other unst
close to zero. After the collision, there has been an excha

a
d
-

ly.

FIG. 4. Details of the bifurcation diagrams of Eq.~2! for a
50.5, illustrating a collision between two primary supercritical b
furcations whileV is increased. Steady~periodic! regimes are indi-
cated by plain~dashed! lines. Thick~thin! lines indicate stable~un-
stable! solutions. Circles indicate secondary Hopf bifurcations. T
arrows indicate how the branches and the bifurcations move aV
increases.~a! V515p/16, before the collision.~b!,~c! V53.25,
right after the collision: the two Hopf bifurcationsB2 andB3 have
been created at the collision (V5p). They sustain a bridge o
periodic solutions and move upwards on their respective branc
~d! V517p/16, bifurcationsB1 and B2 have collided and disap
peared. The bridge is replaced by a periodic solution emerging f
B3.
3-5
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of stability and the steady branch emerging from the bif
cation with the smaller value ofh is stable except betwee
the bifurcationsB1 andB2; the other steady branch emerg
unstable and becomes stable after the bifurcationB3.

In the bifurcation diagram displayed in Fig. 3~a!, it is seen
that the periodic branches have a very complex structure
r*1.5. Nevertheless, the explanation of the bridge form
tion is still relevant in that domain. ChangingV continu-
ously, all steady and periodic branches move in the diagr
as shown for a limited portion of the diagram in Fig. 4. B
after a variation of 2p, the bifurcation diagram is back to it
original shape since it is shape invariant under the trans
mation V→V62np. The secondary Hopf bifurcation
move downwards~upwards! on their steady branch asV
decreases~increases!. Thus, a periodic branch with a com
plex structure is mapped onto another periodic branch w
smaller r as V is decreased. For instance, beginning w
Fig. 3~a! for V52np and reducingV to 2(n21)p, the
secondary Hopf bifurcations labeledB3 andB38 are mapped
onto the bifurcation pointsB2 and B28 , respectively, while
the secondary Hopf bifurcations labeledB2 and B28 are
mapped onto the bifurcation pointsB1 andB18 , respectively.
This suggests that the branches emerging fromB2 andB28 are
connected and are the two ends of a same bridge, thou
possible bridge breaking mechanism is not ruled out.
were not able to check this result numerically because
software used here could not follow bridges with such
complex structure.

V. CHAOTIC SOLUTIONS

The stable periodic branches are eventually destabil
by a quasiperiodic branch, which itself is destabilized a
leads to a chaotic regime. This is the sequence obtained
merically and displayed in Fig. 3~b!. It is also clear from that
picture that in general two or more attractors coexist. T
lower of the chaotic branches in Fig. 3~b! exhibits a phenom-
enon that has been labeled low frequency fluctuations~LFFs!
in semiconductor laser physics@37–42#. The time scales in
semiconductor physics are extremely small. Therefore,

FIG. 5. Unfiltered~upper figure! and low-pass filtered~lower
figure! laser intensity using Eq.~1! with h57.1, a53, and Eq.
~27! with tF52. The time trace is typical of the chaotic LFF.
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the early experiments were made with oscilloscopes actin
low pass filters or time averaging devices. In a simplifi
model of that averaging effect, the recorded intensityI is
related to the instantaneous intensityuEu2 by the equation

dI/dt5~ uEu22I !/tF , ~27!

wheretF is the filter dimensionless time constant. The ban
width of the filter ~expressed in Hz! is equal to 1/(tFtpht),
wheretph is the photon lifetime in the laser. It is only re
cently that streak cameras have been used to probe the
namics of these lasers without significant averaging eff
@40,43#. Typical values oftF are of the order of unity,t
;103 and tph;10212 s. In Fig. 5, we display the instanta
neous~upper trace! and the averaged~lower trace! intensity
for the point of the chaotic branch located ath57.1 in Fig.
3~b!. It is a very neat example of LFF. The solution is com
posed of plateaus separated by gradual drop-offs and s
recoveries. The duration between two consecutive drop-
can reach a few hundred delay times. We have obtained
with plateaus lasting up to 388 delay times for Eq.~8! inte-
grated withh57.984,p522.09 ~slightly below the thresh-
old of the laser without feedback!, anda52.5.

Increasingh along that branch of chaotic solutions, a
other chaotic attractor appears, and the solutions switch w
out any regularity between the two attractors. Increasing
therh, only the new chaotic attractor is left. That attractor
of the classic type: it originates from a periodic attrac
perturbed by a small amplitude chaos. However, on the n
branch of chaotic solution, the chaos is quite different, be
characterized by seemingly random spikes. Finally, we h
verified numerically that replacing the cubic nonlinear
uEu2E by the nonlinearitiesuEuE, uEu3E, and uEu4E, pre-
serves the existence of LFF.

FIG. 6. Coexisting steady, periodic, and chaotic attractors
h55.9, V50, t51, a53, andtF52.
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VI. CONCLUSION

We have reduced asymptotically the Lang-Kobaya
equations~the full model! to the single cubic complex dela
differential equation, Eq.~2!. This equation has a bifurcatio
diagram of steady and periodic solutions, which displays
the complexity found in the full model. In particular, bridge
of periodic solutions connecting two steady branches are
observed. The bifurcation diagram and the numerical sim
lations have been obtained witha53. This is a realistic
value for semiconductor lasers today. Changinga does not
modify the topology of the bifurcation diagram, provideda
.2/p. Below that critical value, pairs of branches emergi
from the trivial solutions may be both supercritical, depen
ing on V. A characteristic of the bifurcation diagram di
played in Fig. 3~a! is that except for two small domains o
the normalized feedback strength, 1.81,h,1.86 and 3.70
,h,3.86, there is always a stable steady state. Above
nc

s.

ys

hy

s.

s

m

05621
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ill
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e

first secondary bifurcation, coexistence of attractors is
rule. Numerically, bistability between steady state and c
otic states is easily found. In Fig. 6, multistability is illus
trated for the section ath55.9 in the bifurcation diagram o
Fig. 3~a! by showing three different coexisting attractors.

Beside the mechanism of bridge formation@20#, a bridge
destruction mechanism has also been identified for small
ues ofa. The asymptotic equation displays LFF. We ha
also verified numerically that equations of the type~1! with
algebraic nonlinearities of the formuEunE with n51,2,3,
and 4 can also sustain LFF regimes. This suggests that
is a pervading property of DDEs rather than an exceptio
feature of Eq.~1!.
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